4.7 Article

Nanoleakage Distribution at Adhesive-Dentin Interfaces in 3D

Journal

JOURNAL OF DENTAL RESEARCH
Volume 90, Issue 8, Pages 1019-1025

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034511408430

Keywords

3D; FIB tomography; electron tomography; dental bonding; dentin

Funding

  1. K.U. Leuven Research Grant [OT/06/55]

Ask authors/readers for more resources

In spite of its role in the degradation of tooth-biomaterial interfaces, reports on nanoleakage are largely inconsistent. The aim of this work was to assess nanoleakage patterns qualitatively and quantitatively in 3D, to determine the influence of direction, position, and inclination of the field-of-view. Therefore, we applied a gold-standard 3-step etch-and-rinse adhesive to bur-cut dentin surfaces, after which interface samples were sectioned, infiltrated with an ammoniacal silver-nitrate solution, and embedded by common TEM procedures. High-resolution 3D models of interfaces were then generated by FIB and electron tomography, following strict conditions determined by Monte Carlo simulations. Inverted images in FIB tomography disclosed morphological characteristics analogous to those revealed by TEM. Quantitative analysis revealed large variations in silver-nitrate uptake between 2D image projections in different directions. Furthermore, silver-nitrate fractions in individual 2D image projections were seldom related to the total 3D volumetric fraction. Electron tomography showed that inclination also affected the morphology of silver-nitrate patterns. In conclusion, conventional nanoleakage evaluation is heavily influenced by direction, position, and inclination of the field-of-view, and thus may contain artifacts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available