4.7 Article

Proteoglycans and Mechanical Behavior of Condylar Cartilage

Journal

JOURNAL OF DENTAL RESEARCH
Volume 88, Issue 3, Pages 244-248

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034508330432

Keywords

temporomandibular joint (TMJ); condyle head; osmotic pressure; triphasic theory; micro-indentation

Funding

  1. NIH/NIAMS [AR051376]

Ask authors/readers for more resources

Mandibular condylar cartilage functions as the load-bearing, shock-absorbing, lubricating material in temporomandibular joints. Little is known about the precise nature of the biomechanical characteristics of this fibro-cartilaginous tissue. We hypothesized that the fixed charge density associated with proteoglycans that introduces an osmotic pressure inside condylar cartilage will significantly increase the tissue's apparent stiffness. Micro-indentation creep tests were performed on porcine TMJ condylar cartilage at 5 different regions-anterior, posterior, medial, lateral, and central-in physiologic and hypertonic solutions. The intrinsic and apparent mechanical properties, including aggregate modulus, shear modulus, and permeability, were calculated by indentation test data and the biphasic theory. The apparent properties (with osmotic effect) were statistically higher than those of the intrinsic solid matrix (without osmotic effect). Regional variations in fixed charge density, permeability, and mechanical modulus were also calculated for condylar surface. The present results provide important quantitative data on the biomechanical properties of TMJ condylar cartilage.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available