4.7 Article

Persistency of methane mitigation by dietary nitrate supplementation in dairy cows

Journal

JOURNAL OF DAIRY SCIENCE
Volume 94, Issue 8, Pages 4028-4038

Publisher

ELSEVIER SCIENCE INC
DOI: 10.3168/jds.2011-4236

Keywords

methane; nitrate; dairy cow

Funding

  1. SenterNovem, an agency of the Dutch Ministry of Economical Affairs

Ask authors/readers for more resources

Feeding nitrate to dairy cows may lower ruminal methane production by competing for reducing equivalents with methanogenesis. Twenty lactating Holstein-Friesian dairy cows (33.2 +/- 6.0 kg of milk/d; 104 +/- 58 d in milk at the start of the experiment) were fed a total mixed ration (corn silage-based; forage to concentrate ratio 66: 34), containing either a dietary urea or a dietary nitrate source [21 g of nitrate/kg of dry matter (DM)] during 4 successive 24-d periods, to assess the methane-mitigating potential of dietary nitrate and its persistency. The study was conducted as paired comparisons in a randomized design with repeated measurements. Cows were blocked by parity, lactation stage, and milk production at the start of the experiment. A 4-wk adaptation period allowed the rumen microbes to adapt to dietary urea and nitrate. Diets were isoenergetic and isonitrogenous. Methane production, energy balance, and diet digestibility were measured in open-circuit indirect calorimetry chambers. Cows were limit-fed during measurements. Nitrate persistently decreased methane production by 16%, whether expressed in grams per day, grams per kilogram of dry matter intake (DMI), or as percentage of gross energy intake, which was sustained for the full experimental period (mean 368 vs. 310 +/- 12.5 g/d; 19.4 vs. 16.2 +/- 0.47 g/kg of DMI; 5.9 vs. 4.9 +/- 0.15% of gross energy intake for urea vs. nitrate, respectively). This decrease was smaller than the stoichiometrical methane mitigation potential of nitrate (full potential = 28% methane reduction). The decreased energy loss from methane resulted in an improved conversion of dietary energy intake into metabolizable energy (57.3 vs. 58.6 +/- 0.70%, urea vs. nitrate, respectively). Despite this, milk energy output or energy retention was not affected by dietary nitrate. Nitrate did not affect milk yield or apparent digestibility of crude fat, neutral detergent fiber, and starch. Milk protein content (3.21 vs. 3.05 +/- 0.058%, urea vs. nitrate respectively) but not protein yield was lower for dietary nitrate. Hydrogen production between morning and afternoon milking was measured during the last experimental period. Cows fed nitrate emitted more hydrogen. Cows fed nitrate displayed higher blood methemoglobin levels (0.5 vs. 4.0 +/- 1.07% of hemoglobin, urea vs. nitrate respectively) and lower hemoglobin levels (7.1 vs. 6.3 +/- 0.11 mmol/L, urea vs. nitrate respectively). Dietary nitrate persistently decreased methane production from lactating dairy cows fed restricted amounts of feed, but the reduction in energy losses did not improve milk production or energy balance.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available