4.7 Article

A model of phosphorus digestion and metabolism in the lactating dairy cow

Journal

JOURNAL OF DAIRY SCIENCE
Volume 91, Issue 5, Pages 2021-2032

Publisher

AMER DAIRY SCIENCE ASSOC
DOI: 10.3168/jds.2007-0668

Keywords

model; phosphorus; dairy cow; digestion and absorption

Ask authors/readers for more resources

A dynamic, mechanistic, compartmental model of phosphorus (P) digestion and metabolism was constructed in the Advanced Continuous Simulation Language using conservation of mass principles and mass action kinetics. Phosphorus was assumed to exist in 3 forms: inorganic (Pi), phytic acid (Pp), and organic (excluding phytic acid; Po). All 3 forms were assumed to be present in the digestive tract with absorption of Pi into blood. Inputs to the model were total P intake; Pp, Po, and Pi as proportions of total P; milk yield; rate of salivation (fixed at 239 L/d); and rate of liquid passage from the rumen (fixed at 198 L/d). The model was fitted to 2 experiments from the literature. Derived parameters were well defined by the data. With a mean observed P intake of 75 g/d, total tract P digestibility was 38%. Phytic acid P digestibility in the rumen was 74%, with no additional Pp digestion in the lower tract. Inorganic P and Po digestibility in the lower tract were 48 and 89%, respectively. Flows of Po and Pi from the rumen were 2.4 and 3.0 times greater than intake, respectively. The increase in Po was apparently due to microbial growth. The increase in Pi arose primarily from secretion of Pi into the rumen via salivation where 65% of absorbed P was recycled to the rumen. Milk synthesis used 30% of absorbed Pi, and 1% was excreted in urine. This research suggested that the primary regulation points for maintaining blood P were bone deposition and resorption and absorption from the intestine. However, because bone P balance was related to both dietary P intake and ruminal phytase activity, it is critical to achieve a better understanding of phytate digestibility across several feeds if dietary P is to be reduced below current requirements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available