4.4 Article

Decreased Cellulase and Xylanase Production in the Fungus Talaromyces cellulolyticus by Disruption of tacA and tctA Genes, Encoding Putative Zinc Finger Transcriptional Factors

Journal

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
Volume 175, Issue 6, Pages 3218-3229

Publisher

HUMANA PRESS INC
DOI: 10.1007/s12010-015-1497-2

Keywords

Biomass; Cellulase; Xylanase; ace1; ctf1; Talaromyces cellulolyticus; Acremonium cellulolyticus

Funding

  1. MEXT/JSPS KAKENHI, Japan [26850058]
  2. Grants-in-Aid for Scientific Research [26850058] Funding Source: KAKEN

Ask authors/readers for more resources

Talaromyces cellulolyticus (formerly Acremonium cellulolyticus) is one of the important strains for industrial cellulase production. An understanding of the control of cellulase gene expression in T. cellulolyticus is insufficient because only a few transcriptional factors related to cellulase gene expression have been identified. In the present study, we disrupted seven putative transcription regulator genes that showed similarity with cellulase or hemicellulase regulator genes in other filamentous fungi and investigated whether these genes are related to cellulase and xylanase production. Among the seven genes, five (tclA, tbgA, tlaA, tmcA, tclB2) had a smaller effect on cellulase and xylanase activities when culturing with cellulose. On the other hand, disruption of tacA and tctA, which are respectively homologues of ace1 (repressor of cellulase) and ctf1 (inducer of cutinase), led to a decrease in cellulase and hemicellulase production due to effects at both the enzymatic and transcriptional levels, indicating that tacA and tctA have positive roles in cellulase and xylanase production in T. cellulolyticus. These results suggest that cellulase and xylanase gene regulation in T. cellulolyticus differs from that in other filamentous fungi and imply that unknown transcriptional mechanisms function in T. cellulolyticus.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available