4.5 Article

Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants

Journal

JOURNAL OF CULTURAL HERITAGE
Volume 10, Issue 2, Pages 214-221

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.culher.2008.07.008

Keywords

Stone consolidation; Tetraethoxysilane; (3-glycidoxypropyl) trimethoxysilane; Silica nanoparticle; Sol-gel reaction

Funding

  1. National Research Institute of Cultural Heritage Administration

Ask authors/readers for more resources

Consolidants based on tetraethoxysilane (TEOS) have been widely used for the consolidation of decaying stone heritages. These products polymerize within the porous structure of the decaying stone, significantly increasing the cohesion of the material. However, TEOS-based consolidants suffer from practical drawbacks, such as crack formation of the gel during the drying phase due to the developed capillary force, which is typical for TEOS-based consolidants. We have prepared new consolidants TEOS-based consolidants containing flexible (3-glycidoxypropyl) trimethoxy si lane (GPTMS) and silica nanoparticles in order to reduce capillary force development during gel drying, and have characterized them for the application of stone consolidants. Different sizes of silica nanoparticles were used, which were smaller than the pore size of the tested stone. The properties of the TEOS/GPTMS/nanoparticle composite solution were compared with those of the commercial products Wacker OH and Unil sandsteinfestiger OH 1:1. The gelation time was similar to that of commercial consolidants, and the TEOS/GPTMS/nanoparticle solution was stable over a period of up to six months. The contact angle of the surface increased with the addition of the nanoparticle, as well as with the addition the GPTMS, which is higher than that of commercial Wacker OH. The addition of a nanoparticle, as well as GPTMS having flexible segment, provided a crack-free material, while the gels obtained from the commercial consolidants exhibited cracking, (C) 2009 Elsevier Masson SAS. All fights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available