4.4 Article Proceedings Paper

Progress in the growth of large scale Ti:sapphire crystals by the heat exchanger method (HEM) for petawatt class lasers

Journal

JOURNAL OF CRYSTAL GROWTH
Volume 312, Issue 8, Pages 1138-1141

Publisher

ELSEVIER
DOI: 10.1016/j.jcrysgro.2009.11.002

Keywords

Ti:sapphire; Heat exchanger method (HEM); Amplifier crystal; Ultrafast laser; Petawatt laser; Solid state laser

Ask authors/readers for more resources

In modelocked laser systems, the shortest possible pulse width is determined by the Fourier transform of the spectral bandwidth of the pulse; the wider the spectral bandwidth, the shorter the pulse. Titanium-doped sapphire (Ti:sapphire) offers the widest gain bandwidth of any currently available laser gain material, enabling systems to deliver pulse widths shorter than 10 fs (10(-14) s). Because of the short pulse durations, the peak power can be extremely high, and therefore Ti:sapphire lasers have been at the forefront of research into ultrafast, ultrahigh power lasers. These intense ultrashort laser pulses are the light source for fundamental studies of light-matter interactions. Interesting scientific results have been achieved with these lasers in the fields of high order harmonic and short pulse X-ray generations, high density plasmas, relativistic acceleration, relativistic nonlinear optics, time resolved X-ray diffraction with unprecedented time resolution and others. Researchers have recently achieved near petawatt (10(15) W) peak power laser operation using large diameter Ti:sapphire amplifiers, and are developing higher power lasers for research into high energy physics. However, the saturation fluence of the Ti:sapphire gain medium is limited to about 1 J/cm(2). Thus, continued scale up in peak laser energy requires the scale up of high-quality Ti:sapphire crystals for laser amplifiers. Current demand is for 100 mm diameter crystals, and this requirement is projected to grow up to 250 mm diameter crystals in a few years. To address this technological bottleneck, Crystal Systems has upgraded its heat exchanger method (HEM) furnaces and fabrication and metrology to scale up the production of Ti:sapphire crystals. Currently, 175 mm diameter Ti:sapphire amplifier crystals are being fabricated from high-quality 208 mm boules. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available