4.4 Article

Application of a conproportionation reaction to a synthesis of shape-controlled gold nanoparticles

Journal

JOURNAL OF CRYSTAL GROWTH
Volume 311, Issue 19, Pages 4462-4466

Publisher

ELSEVIER
DOI: 10.1016/j.jcrysgro.2009.08.002

Keywords

Defects; Growth form solutions; Metals; Nanomaterials

Funding

  1. NIT-21st century COE program for Environmental Friendly Ceramics

Ask authors/readers for more resources

Synthesis of gold nanoparticles with multiple shapes by a modified seeding growth method is reported. The optical extinction spectra of a mixture of the seed and growth solutions indicate that the seed particle size decreases during stirring the mixture by a conproportionation reaction of Au metal with Au(III) ions. This conproportionation reaction is used to investigate the effects of variation in seed particle size on the resultant gold nanoparticle shape. When single crystalline and multiply twinned particles are used as the seed particles, they grow into gold nanorods and nanobipyramids, respectively. By letting the seed particles experience the conproportionation reaction before the particle growth to decrease the size, the surface of resultant nanoparticles roughens. Increasing the conproportionation reaction time up to 5 min, multi-branched gold nanoparticles with many lattice defects grow from both of the seed particles. This indicates that the conproportionation reaction is useful to generate lattice defects during the particle growth, which lead to the formation of gold nanoparticles with complex shapes. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available