4.4 Article

Vertical gradient freeze of 4 inch Ge crystals in a heater-magnet module

Journal

JOURNAL OF CRYSTAL GROWTH
Volume 311, Issue 8, Pages 2294-2299

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jcrysgro.2009.01.139

Keywords

Magnetic fields; Gradient freeze technique; Semiconducting germanium

Ask authors/readers for more resources

For the first time 4-in. Ge single crystals were grown using the vertical gradient freeze technique (VGF) in a traveling magnetic field (TMF) generated in a heater-magnet module (HMM). The HMM was placed closely around the growth container inside the chamber of the industrial Bridgman equipment Kronos. The HMM generates heat and a TMF together. It has a coil-shaped design and replaces the standard meander-type heater. Direct current (DC) for heat production and out-of-phase-accelerated currents (AC) for TMF generation were simultaneously delivered to three equally spaced coil segments connected by star-type wiring. In order to achieve a nearly flat and slightly convex growing interface the AC amplitude, frequency and phase shift have been optimized numerically by using the 3D CrysMAS code and validated by striation analysis on as-grown crystals. Low-field frequencies in the range f=20-50 Hz proved to be of most suitable condition. TMF programming is required to obtain constant interface morphology over the whole growth run. First Ge single crystals grown under nearly optimal conditions show reduced macro- and micro-inhomogeneities, relatively low dislocation density of (3-10) x 10(2) cm(-2), and high carrier mobility of mu(p)=2800 cm(2)V(-1)s(-1). (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available