4.2 Article

Computational Fluid Dynamics Study of the Inspiratory Upper Airway and Clinical Severity of Obstructive Sleep Apnea

Journal

JOURNAL OF CRANIOFACIAL SURGERY
Volume 23, Issue 2, Pages 401-405

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/SCS.0b013e318240feed

Keywords

Obstructive sleep apnea syndrome; flow simulation; computed tomography; physiopathology

Categories

Funding

  1. National Science Council of Taiwan [NSC 96-2314-B-182-018, NSC-98-2314-B-182-016-MY2]

Ask authors/readers for more resources

The apnea-hypopnea index (AHI) is a widely accepted measure for the severity of obstructive sleep apnea (OSA). Current methods to determine AHI fail to provide anatomic information for treatment decisions. In this report, we studied three-dimensional models of upper airways acquired by computed tomographic scanning with geometric measurements and computational fluid dynamics (CFD) analysis and evaluated the correlations with AHI. Participants had CT scans of their upper airways after standard polysomnography studies. Three-dimensional surface models of upper airways were generated for cross-sectional area measurements of the choanae (A(CH)) and the smallest cross-sectional area (Amin). Computational fluid dynamic analysis was then performed by using this three-dimensional model. Pressure differences required to set tidal volume during inspiration (Delta P-min-INSP) and expiration (Delta P-max-EXP) and minimum negative pressure produced in the level of A(CH) (Pmin-INSP at A(CH)) and A(min) (P-min-INSP at A(min)) were calculated. Correlations of these parameters and the body mass index with AHI were analyzed. Statistical differences between groups of different AHI ranges were also compared. The pressure distribution simulated by CFD demonstrated abrupt pressure drops in A(min) level, and this phenomenon was more significant in severe OSA. All parameters except A(CH) and P-min-INSP at A(min) significantly correlated with the AHI, and there were significant statistical differences between the OSA groups and the normal group. The results indicate that, in our study group, the geometry of pharyngeal airway and its CFD simulation correlate well with AHI. This model may be further applied for clinical evaluation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available