4.5 Article

Computer-aided orbital wall defects treatment by individual design ultrahigh molecular weight polyethylene implants

Journal

JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY
Volume 42, Issue 4, Pages 283-289

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1016/j.jcms.2013.05.015

Keywords

Orbit; CAD; CAM; Ultrahigh molecular weight polyethylene

Funding

  1. Medical University of Lodz grant, Ledo Company [503/5-061-02/503-01]

Ask authors/readers for more resources

Despite of well-known advantages of high molecular weight polyethylene (Medpor, Synpore) in orbital reconstructions, the thickness of those implants significantly exceeds 0.5 mm and precise modification of thickness is limited. The aim of this study was to present the application of a selfdeveloped method of treatment orbital wall fracture by custom implant made of ultrahigh molecular weight polyethylene (UHMW-PE). Material and method: First, the test of influence of sterilization process upon implant deformation was performed (autoclaving, ethylene oxide, gas plasma, irradiation). Next, ten cases for delayed surgical treatment of orbital fracture were included into this study (7 males, 3 females). Based on CT scan and mirrored technique, a CAD model of virtual implant for repairing orbital wall was made. Then, an implant was manufactured with a computer numerical controlled milling machine from UHMW-PE block, sterilized and used during a surgical procedure. Clinically used implants had thickness from 0.2 to 4.0 mm. Results: The best method of sterilization is ethylene oxide process, and the worst is autoclaving. In this series of delayed surgical cases, functional results of orbital surgery are worse than in simpler, early treated cases, but long-term subsidence of diplopia is noticeable [10% poor results]. The results of the treatment depend on the initial level of diplopia where severe initial diplopia to be corrected requires thicker implants (p<0.01). It also leads to longer surgical procedures (p<0.01), but prolongation of the surgery had no negative influence upon results of any investigated follow-up examinations. Obviously, the orbital destruction intensity is related to injury-evoked initial diplopia but it also influences whole results of treatment up to 12 months post-op. Interesting result is presented by the relation of maximal implant thickness to 12-month diplopia evaluation. Thicker implants used result in lower residual diplopia (p<0.05). This is important because of the correlation between the higher orbital destruction intensity with a thicker UHMW-PE implant (p<0.05) applied in this series. Conclusion: Patient-specific ultrahigh molecular weight polyethylene implants enable precise reconstructions of orbital wall. One should not be afraid of a significant eye globe reposition caused by these thickness modulated implants, as such repositioning is essential for an efficient correction of enophthalmos. (C) 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available