4.8 Article

PEGylation of HPMA-based block copolymers enhances tumor accumulation in vivo: A quantitative study using radiolabeling and positron emission tomography

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 172, Issue 1, Pages 77-85

Publisher

ELSEVIER
DOI: 10.1016/j.jconrel.2013.07.027

Keywords

Fluorine-18 labeling; HPMA; PEG; PET; Structure-property relationships; Walker 256 mammary carcinoma

Funding

  1. Max-Planck Graduate Center (MPGC)
  2. Graduate School Materials Science in Mainz (Excellence Initiative) [DFG/GSC 266]
  3. DFG [RO 985/30-1, TH 482/4-1, ZE 230/21-1]
  4. SAMT Initiative Mainz

Ask authors/readers for more resources

This paper reports the body distribution of block copolymers (made by controlled radical polymerization) with N-(2-hydroxypropyl)methacrylamide (HPMA) as hydrophilic block and laurylmethacrylate (LMA) as hydrophobic block. They form micellar aggregates in aqueous solution. For this study the hydrophilic/hydrophobic balance was varied by incorporation of differing amounts of poly(ethylene glycol) (PEG) side chains into the hydrophilic block, while keeping the degree of polymerization of both blocks constant. PEGylation reduced the size of the micellar aggregates (R-h = 113 to 38 nm) and led to a minimum size of 7% PEG side chains. Polymers were labeled with the positron emitter F-18, which enables to monitor their biodistribution pattern for up to 4 h with high spatial resolution. These block copolymers were investigated in Sprague-Dawley rats bearing the Walker 256 mammary carcinoma in vivo. Organ/tumor uptake was quantified by ex vivo biodistribution as well as small animal positron emission tomography (PET). All polymers showed renal clearance with time. Their uptake in liver and spleen decreased with size of the aggregates. This made PEGylated polymers - which form smaller aggregates - attractive as they show a higher blood pool concentration. Within the studied polymers, the block copolymer of 7% PEGylation exhibited the most favorable organ distribution pattern, showing highest blood-circulation level as well as lowest hepatic and splenic uptake. Most remarkably, the in vivo results revealed a continuous increase in tumor accumulation with PEGylation (independent of the blood pool concentration) - starting from lowest tumor uptake for the pure block copolymer to highest enrichment with 11% PEG side chains. These findings emphasize the need for reliable (non-invasive) in vivo techniques revealing overall polymer distribution and helping to identify drug carrier systems for efficient therapy. (C) 2013 Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available