4.8 Article

Biodegradable hybrid polymer micelles for combination drug therapy in ovarian cancer

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 171, Issue 3, Pages 339-348

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2013.04.026

Keywords

Combination drug delivery; Cross-linked polymer micelles; Ovarian cancer; Cisplatin; Paclitaxel; Controlled release

Funding

  1. National Institute of Health [CA116590]
  2. National Institute of General Medical Sciences of the National Institutes of Health [P20GM103480]

Ask authors/readers for more resources

The co-delivery of drug combination at a controlled ratio via the same vehicle to the cancer cells is offering the advantages such as spatial-temporal synchronization of drug exposure, synergistic therapeutic effects and increased therapeutic potency. In an attempt to develop such multidrug vehicle this work focuses on functional biodegradable and biocompatible polypeptide-based polymeric micelles. Triblock copolymers containing the blocks of ethylene glycol, glutamic acid and phenylalanine (PEG-PGlu-PPhe) were successfully synthesized via NCA-based ring-opening copolymerization and their composition was confirmed by H-1 NMR. Self-assembly behavior of PEG-PGlu(90)-PPhe(25) was utilized for the synthesis of hybrid micelles with PPhe hydrophobic core, cross-linked ionic PGlu intermediate shell layer, and PEG corona. Cross-linked (cl) micelles were about 90 nm in diameter (xi-potential = -20 mV), uniform (narrow size distribution), and exhibited nanogels-like behavior. Degradation of cl-micelles was observed in the presence of proteolytic enzymes (cathepsin B). The resulting cl-micelles can incorporate the combination of drugs with very different physical properties such as cisplatin (15 w/w% loading) and paclitaxel (9 w/w% loading). Binary drug combination in cl-micelles exhibited synergistic cytotoxicity against human ovarian A2780 cancer cells and exerted a superior antitumor activity by comparison to individual drug-loaded micelles or free cisplatin in cancer xenograft model in vivo. Tunable composition and stability of these hybrid biodegradable micelles provide platform for drug combination delivery in a broad range of cancers. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available