4.8 Article

Functionalized nanoparticles provide early cardioprotection after acute myocardial infarction

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 170, Issue 2, Pages 287-294

Publisher

ELSEVIER
DOI: 10.1016/j.jconrel.2013.04.022

Keywords

Heart failure; Insulin-like growth factor-1; Cardiomyocyte; Akt; Apoptosis

Ask authors/readers for more resources

Recent developments in nanotechnology have created considerable potential toward diagnosis and cancer therapy. In contrast, the use of nanotechnology in tissue repair or regeneration remains largely unexplored. We hypothesized that intramyocardial injection of insulin-like growth factor (IGF)-1-complexed poly(D, L-lactide-co-glycolide) (PLGA) nanoparticles (PLGA-IGF-1 NPs) increases IGF-1 retention, induces Akt phosphorylation, and provides early cardioprotection after acute myocardial infarction (MI). We synthesized 3 different sizes of PLGA particles (60 nm, 200 nm, and 1 mu m) which were complexed with IGF-1 using electrostatic force to preserve the biological function of IGF-1. Afterward, we injected PLGA-IGF-1 NPs in the heart after MI directly. Compared with the other two larger particles, the 60 nm-sized PLGA-IGF-1 NPs carried more IGF-1 and induced more Akt phosphorylation in cultured cardiomyocytes. PLGA-IGF-1 NPs also prolonged Akt activation in cardiomyocytes up to 24 h and prevented cardiomyocyte apoptosis induced by doxorubicin in a dose-dependent manner. In vivo, PLGA-IGF-1 NP treatment significantly retained more IGF-1 in the myocardium than the IGF-1 alone treatment at 2, 6, 8, and 24 h. Akt phosphorylation was detected in cardiomyocytes 24 h post-MI only in hearts receiving PLGA-IGF-1 NP treatment, but not in hearts receiving injection of PBS, IGF-1 or PLGA NPs. Importantly, a single intramyocardial injection of PLGA-IGF-1 NPs was sufficient to prevent cardiomyocyte apoptosis (P < 0.001), reduce infarct size (P < 0.05), and improve left ventricle ejection fraction (P < 0.01) 21 days after experimental MI in mice. Our results not only demonstrate the potential of nanoparticle-based technology as a new approach to treating MI, but also have significant implications for translation of this technology into clinical therapy for ischemic cardiovascular diseases. (C) 2013 Elsevier B. V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available