4.8 Article

Octaarginine- and pH sensitive fusogenic peptide-modified nanoparticles for liver gene delivery

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 156, Issue 3, Pages 374-380

Publisher

ELSEVIER
DOI: 10.1016/j.jconrel.2011.08.012

Keywords

Multifunctional envelope-type nano device; Octaarginine; pH-sensitive fusogenic peptide; Liver; Gene delivery

Funding

  1. Japan Science and Technology Agency (JST)
  2. Ministry of Education, Culture, Sports, Science and Technology of Japan
  3. Matching Program for Innovations in Future Drug Discovery and Medical Care
  4. Grants-in-Aid for Scientific Research [23790038] Funding Source: KAKEN

Ask authors/readers for more resources

We previously reported that octaarginine peptide modified liposomes (R8-liposomes) largely accumulated in the liver after intravenous administration and that this is dependent on the R8-density. We report herein on the development of a Multifunctional Envelope-type Nano Device modified with R8 and GALA, as a pH-sensitive fusogenic peptide (R8-GALA-MEND) for liver gene delivery. An R8-MEND encapsulating pDNA prepared using two different cores (negatively or positively charged pDNA/polyethylene imine condensed particles) failed to produce a high gene expression in the liver. Modification with GALA dramatically increased gene expression particularly in the liver only in the case of a negative core R8-MEND. Quantification of the number of gene copies delivered to liver cells and nuclei revealed that the amount of pDNA was significantly higher in the case of positive core R8-MENDs, regardless of the absence or presence of GALA. However, gene expression efficiencies per nucleus-delivered pDNA were much higher in the case of the negative core R8-MEND, especially the R8-GALA-MEND suggesting that the substantial improvement in gene expression can be explained by an improved gene expression efficiency per pDNA in the presence of GALA. A comparative study between the developed R8-GALA-MEND and a similar system containing DOTAP, a commonly used cationic lipid, instead of R8 showed that gene expression of the R8-GALA-MEND was 29 times higher than that of the DOTAP-GALA-MEND and is more selective for the liver. Collectively, these results suggest that the combination of a negatively charged core system and GALA modification of the R8-MEND is useful system for efficiently delivering genes to the liver. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available