4.8 Article

Enhanced gene delivery using disulfide-crosslinked low molecular weight polyethylenimine with listeriolysin o-polyethylenimine disulfide conjugate

Journal

JOURNAL OF CONTROLLED RELEASE
Volume 131, Issue 1, Pages 70-76

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jconrel.2008.07.007

Keywords

Polyethylenimine; Listeriolysin o; Disulfide-crosslink; Non-viral gene delivery

Funding

  1. NIH [R01 AI047173, R01 AI058080]

Ask authors/readers for more resources

One of the most important requirements for non-viral gene delivery systems is the ability to mediate high levels of gene expression with low toxicity. After the DNA/vector complexes are taken up by cells through endocytosis, DNA is typically contained within the endocytic compartments and rapidly degraded due to the low pH and hydrolytic enzymes within endosomes and lysosomes, limiting its accessibility to the cytosol and ultimately to the nucleus. In this study, the endosomolytic protein listeriolysin O (LLO) from the intracellular pathogen Listeria monocytogenes was conjugated with polyethylenimine (PEI) of average molecular weight 25 kDa (PEI25) via a reversible disulfide bond (LLO-s-s-PEI), and incorporated into plasmid DNA condensed with disulficle-crosslinked low molecular weight PEI 1.8 kDa (PEI1.8). We have investigated and demonstrated that high gene transfection efficiency, which is comparable to that by the most commonly used PEI25, can be achieved by reversibly crosslinking low molecular weight PEI (PEI1.8) using disulfide bonds, with greatly reduced cytotoxicity of the PEI. The reversible incorporation of LLO into the DNA condensates of PEI, through the use of the synthesized LLO-s-s-PEI conjugate, further enhances the transfection efficiency beyond that of DNA condensates with disulfide-crosslinked PEI1.8 alone. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available