4.4 Article

Small molecule correctors of F508del-CFTR discovered by structure-based virtual screening

Journal

JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN
Volume 24, Issue 12, Pages 971-991

Publisher

SPRINGER
DOI: 10.1007/s10822-010-9390-0

Keywords

Cystic fibrosis; CFTR; Structure-based virtual screening; Correctors; Potentiators; Modulators; F508; Docking; Homology modeling; YFP; Ussing chamber; Chemical chaperones; Pharmacological chaperones

Funding

  1. Cystic Fibrosis Foundation Therapeutics

Ask authors/readers for more resources

Folding correctors of F508del-CFTR were discovered by in silico structure-based screening utilizing homology models of CFTR. The intracellular segment of CFTR was modeled and three cavities were identified at inter-domain interfaces: (1) Interface between the two Nucleotide Binding Domains (NBDs); (2) Interface between NBD1 and Intracellular Loop (ICL) 4, in the region of the F508 deletion; (3) multi-domain interface between NBD1:2:ICL1:2:4. We hypothesized that compounds binding at these interfaces may improve the stability of the protein, potentially affecting the folding yield or surface stability. In silico structure-based screening was performed at the putative binding-sites and a total of 496 candidate compounds from all three sites were tested in functional assays. A total of 15 compounds, representing diverse chemotypes, were identified as F508del folding correctors. This corresponds to a 3% hit rate, similar to tenfold higher than hit rates obtained in corresponding high-throughput screening campaigns. The same binding sites also yielded potentiators and, most notably, compounds with a dual corrector-potentiator activity (dual-acting). Compounds harboring both activity types may prove to be better leads for the development of CF therapeutics than either pure correctors or pure potentiators. To the best of our knowledge this is the first report of structure-based discovery of CFTR modulators.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available