4.4 Article

Analysis and use of fragment-occurrence data in similarity-based virtual screening

Journal

JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN
Volume 23, Issue 9, Pages 655-668

Publisher

SPRINGER
DOI: 10.1007/s10822-009-9285-0

Keywords

Fingerprint; Fragment occurrences; Ligand-based virtual screening; Similarity searching; Substructural fragment; Tanimoto coefficient; Virtual screening; Weighting scheme

Funding

  1. Government of Malaysia

Ask authors/readers for more resources

Current systems for similarity-based virtual screening use similarity measures in which all the fragments in a fingerprint contribute equally to the calculation of structural similarity. This paper discusses the weighting of fragments on the basis of their frequencies of occurrence in molecules. Extensive experiments with sets of active molecules from the MDL Drug Data Report and the World of Molecular Bioactivity databases, using fingerprints encoding Tripos holograms, Pipeline Pilot ECFC_4 circular substructures and Sunset Molecular keys, demonstrate clearly that frequency-based screening is generally more effective than conventional, unweighted screening. The results suggest that standardising the raw occurrence frequencies by taking the square root of the frequencies will maximise the effectiveness of virtual screening. An upper-bound analysis shows the complex interactions that can take place between representations, weighting schemes and similarity coefficients when similarity measures are computed, and provides a rationalisation of the relative performance of the various weighting schemes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available