4.7 Article

A comparison of classical Runge-Kutta and Henon's methods for capturing chaos and chaotic transients in an aeroelastic system with freeplay nonlinearity

Journal

NONLINEAR DYNAMICS
Volume 81, Issue 1-2, Pages 169-188

Publisher

SPRINGER
DOI: 10.1007/s11071-015-1980-x

Keywords

Freeplay nonlinearity; Henon's method; Rational polynomial approximation; Chaotic transient; Largest Lyapunov exponent

Funding

  1. Fundamental Research Funds for the Central Universities [3102015ZY008]
  2. Chinese National Science Foundation [11172235]

Ask authors/readers for more resources

A typical two-dimensional airfoil with freeplay nonlinearity in pitch undergoing subsonic flow is studied via numerical integration methods. Due to the existence of the discontinuous nonlinearity, the classical fourth-order Runge-Kutta (RK4) method cannot capture the aeroelastic response accurately. Particularly, it is because the RK4 method is incapable of detecting the discontinuous points of the freeplay that leads to the numerical instability and inaccuracy. To resolve this problem, the RK4 method is used with the aid of the Henon's method (referred to as the RK4Henon method) to precisely predict the freeplay's switching points. The comparison of the classical RK4 and the RK4Henon methods is carried out in the analyses of periodic motions, chaos, and long-lived chaotic transients. Numerical simulations demonstrate the advantages of the RK4Henon method over the classical RK4 method, especially for the analyses of chaos and chaotic transients. Another existing method to deal with the freeplay nonlinearity is to use an appropriate rational polynomial (RP) to approximate this discontinuous nonlinearity. Consequently, the discontinuity is removed. However, it is demonstrated that the RP approximation method is unable to capture the chaotic transients. In addition, an efficient tool for predicting the existence of chaotic transients is proposed by means of the evolution curve of the largest Lyapunov exponent. Finally, the effects of system parameters on the aeroelastic response are investigated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available