4.7 Article

Phase field method to optimize dielectric devices for electromagnetic wave propagation

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 257, Issue -, Pages 216-240

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2013.09.051

Keywords

Phase field; Shape optimization; Electromagnetic system; Sensitivity analysis; Topology optimization; Level set

Ask authors/readers for more resources

We discuss a phase field method for shape optimization in the context of electromagnetic wave propagation. The proposed method has the same functional capabilities as the level set method for shape optimization. The first advantage of the method is the simplicity of computation, since extra operations such as re-initialization of functions are not required. The second is compatibility with the topology optimization method due to the similar domain representation and the sensitivity analysis. Structural shapes are represented by the phase field function defined in the design domain, and this function is optimized by solving a time-dependent reaction diffusion equation. The artificial double-well potential function used in the equation is derived from sensitivity analysis. We study four types of 2D or 2.5D (axisymmetric) optimization problems. Two are the classical problems of photonic crystal design based on the Bloch theory and photonic crystal wave guide design, and two are the recent topics of designing dielectric left-handed metamaterials and dielectric ring resonators. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available