4.7 Article

Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell's equations on Cartesian grids

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 235, Issue -, Pages 14-31

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2012.10.019

Keywords

Staggered discontinuous Galerkin method; Maxwell's equations; Energy conservation; Gauss law; Optimal convergence; Superconvergence; Yee's scheme; Edge element method; Dispersion error

Funding

  1. Hong Kong Research Grant Council [401010]

Ask authors/readers for more resources

In this paper, a new type of staggered discontinuous Galerkin methods for the three dimensional Maxwell's equations is developed and analyzed. The spatial discretization is based on staggered Cartesian grids so that many good properties are obtained. First of all, our method has the advantages that the numerical solution preserves the electromagnetic energy and automatically fulfills a discrete version of the Gauss law. Moreover, the mass matrices are diagonal, thus time marching is explicit and is very efficient. Our method is high order accurate and the optimal order of convergence is rigorously proved. It is also very easy to implement due to its Cartesian structure and can be regarded as a generalization of the classical Yee's scheme as well as the quadrilateral edge finite elements. Furthermore, a superconvergence result, that is the convergence rate is one order higher at interpolation nodes, is proved. Numerical results are shown to confirm our theoretical statements, and applications to problems in unbounded domains with the use of PML are presented. A comparison of our staggered method and non-staggered method is carried out and shows that our method has better accuracy and efficiency. (c) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available