4.7 Article

Enhancement of stability and accuracy of the moving particle semi-implicit method

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 230, Issue 8, Pages 3093-3118

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2011.01.009

Keywords

MPS method; Modified MPS methods; Particle method; Tensile instability; Gradient correction

Ask authors/readers for more resources

As a Lagrangian gridless particle method, the MPS (Moving Particle Semi-implicit) method has been proven useful in a wide range of engineering applications. Up to now, most of MPS applications have been limited to problems with compressive stress states. This paper investigates the performance and stability of MPS method in simulation of more general hydrodynamic problems, including those characterized by tensile stresses or by changes in the stress states. It is shown that MPS-based simulations are prone to become destabilized in presence of attractive interparticle forces. This instability appears to be similar to the so-called tensile instability in SPH method. Two new modifications, namely, a modified Poisson Pressure Equation and a corrective matrix for pressure gradient model, are proposed to resolve this shortcoming. These two new modifications together with two previously proposed improvements are shown to stabilize and enhance the performance of MPS method. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available