4.7 Article

Numerical representation of geostrophic modes on arbitrarily structured C-grids

Journal

JOURNAL OF COMPUTATIONAL PHYSICS
Volume 228, Issue 22, Pages 8321-8335

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2009.08.006

Keywords

-

Funding

  1. Los Alamos [LA-UR 09-03238]

Ask authors/readers for more resources

A C-grid staggering, in which the mass variable is stored at cell centers and the normal velocity component is stored at cell faces (or edges in two dimensions) is attractive for atmospheric modeling since it enables a relatively accurate representation of fast wave modes. However, the discretization of the Coriolis terms is non-trivial. For constant Coriolis parameter, the linearized shallow water equations support geostrophic modes: stationary solutions in geostrophic balance. A naive discretization of the Coriolis terms can cause geostrophic modes to become non-stationary, causing unphysical behaviour of numerical solutions. Recent work has shown how to discretize the Coriolis terms on a planar regular hexagonal grid to ensure that geostrophic modes are stationary while the Coriolis terms remain energy conserving. In this paper this result is extended to arbitrarily structured C-grids. An explicit formula is given for constructing an appropriate discretization of the Coriolis terms. The general formula is illustrated by showing that it recovers previously known results for the planar regular hexagonal C-grid and the spherical longitude-latitude C-grid. Numerical calculation confirms that the scheme does indeed give stationary geostrophic modes for the hexagonal-pentagonal and triangular geodesic C-grids on the sphere. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available