4.1 Article

Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins

Journal

JOURNAL OF COMPUTATIONAL NEUROSCIENCE
Volume 27, Issue 2, Pages 229-243

Publisher

SPRINGER
DOI: 10.1007/s10827-009-0139-5

Keywords

Calbindin; Parvalbumin; Kinetic model; Spine; Purkinje neuron

Ask authors/readers for more resources

Dendritic spines are thought to compartmentalize second messengers like Ca2+. The notion of isolated spine signaling, however, was challenged by the recent finding that under certain conditions mobile endogenous Ca2+-binding proteins may break the spine limit and lead to activation of Ca2+-dependent dendritic signaling cascades. Since the size of spines is variable, the spine neck may be an important regulator of this spino-dendritic crosstalk. We tested this hypothesis by using an experimentally defined, kinetic computer model in which spines of Purkinje neurons were coupled to their parent dendrite by necks of variable geometry. We show that Ca2+ signaling and calmodulin activation in spines with long necks is essentially isolated from the dendrite, while stubby spines show a strong coupling with their dendrite, mediated particularly by calbindin D28k. We conclude that the spine neck geometry, in close interplay with mobile Ca2+-binding proteins, regulates the spino-dendritic crosstalk.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available