4.4 Article

Corrected small basis set Hartree-Fock method for large systems

Journal

JOURNAL OF COMPUTATIONAL CHEMISTRY
Volume 34, Issue 19, Pages 1672-1685

Publisher

WILEY
DOI: 10.1002/jcc.23317

Keywords

Hartree-Fock; London dispersion energy; counterpoise-correction; noncovalent interactions; protein structures; supramolecular systems

Funding

  1. Fonds der Chemischen Industrie

Ask authors/readers for more resources

A quantum chemical method based on a Hartree-Fock calculation with a small Gaussian AO basis set is presented. Its main area of application is the computation of structures, vibrational frequencies, and noncovalent interaction energies in huge molecular systems. The method is suggested as a partial replacement of semiempirical approaches or density functional theory (DFT) in particular when self-interaction errors are acute. In order to get accurate results three physically plausible atom pair-wise correction terms are applied for London dispersion interactions (D3 scheme), basis set superposition error (gCP scheme), and short-ranged basis set incompleteness effects. In total nine global empirical parameters are used. This so-called Hartee-Fock-3c (HF-3c) method is tested for geometries of small organic molecules, interaction energies and geometries of noncovalently bound complexes, for supramolecular systems, and protein structures. In the majority of realistic test cases good results approaching large basis set DFT quality are obtained at a tiny fraction of computational cost. (c) 2013 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available