4.7 Article Proceedings Paper

On the multi-component layout design with inertial force

Journal

JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS
Volume 234, Issue 7, Pages 2222-2230

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.cam.2009.08.073

Keywords

Multi-component system; Integrated layout optimization; Finite-circle method; Inertial loading

Ask authors/readers for more resources

The purpose of this paper is to introduce inertial forces into the proposed integrated layout optimization method designing the multi-component systems. Considering a complex packing system for which several components will be placed in a container of specific shape, the aim of the design procedure is to find the optimal location and orientation of each component, as well as the configuration of the structure that supports and interconnects the components. On the one hand, the Finite-circle Method (FCM) is used to avoid the components overlaps, and also overlaps between components and the design domain boundaries. One the other hand, the optimal material layout of the supporting structure in the design domain is designed by topology optimization. A consistent material interpolation scheme between element stiffness and inertial load is presented to avoid the singularity of localized deformation due to the presence of design dependent inertial loading when the element stiffness and the involved inertial load are weakened with the element material removal. The tested numerical example shows the proposed methods extend the actual concept of topology optimization and are efficient to generate reasonable design patterns. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available