4.6 Article

Shear Strength of FRP RC Beams and One-Way Slabs without Stirrups

Journal

JOURNAL OF COMPOSITES FOR CONSTRUCTION
Volume 18, Issue 5, Pages -

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)CC.1943-5614.0000469

Keywords

Shear strength; Fiber-reinforced polymer (FRP); Concrete beams; Reinforced concrete

Funding

  1. Australian Research Council ARC Discovery Project [DP0985828]
  2. China Scholarship Council

Ask authors/readers for more resources

Due to the complex mechanism of shear behavior, most current empirical methods do not physically simulate the shear behavior as seen in practice. These approaches, therefore, cannot be directly applied to accommodate advanced technologies such as in the use of fiber-reinforced polymer (FRP) or fiber-reinforced concrete. With FRP reinforcement widely used nowadays, there is a need for a mechanics-based approach to explain and simulate the shear failure mechanism. In this paper and from a mechanics-based segmental approach, a generic closed-form solution is derived for quantifying the shear capacity of RC beams and one-way slabs without stirrups and in theory with any type of reinforcement and concrete. The model is validated with 209 published shear tests of FRP-reinforced specimens with normal concrete and, to show the generic nature of the model, with a further 626 published shear tests on beams with steel reinforcement. The generic closed-form solution is further simplified to facilitate shear design. A comparison to the predictions made by design recommendations shows a reduction to different degrees in both mean and scatter of the measured-to-predicted shear strength ratio for the proposed approaches. (C) 2014 American Society of Civil Engineers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available