4.4 Article

In plane compressive response and crushing of foam filled aluminum honeycombs

Journal

JOURNAL OF COMPOSITE MATERIALS
Volume 49, Issue 26, Pages 3215-3228

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021998314561069

Keywords

Polyurethane foam; crushing strength; specific absorbed energy; finite element method; foam filled honeycomb

Ask authors/readers for more resources

In this paper, the influence of foam filling of aluminum honeycomb core on its in-plane crushing properties is investigated. An aluminum honeycomb core and a polyurethane foam with densities of 65, 90, and 145 kg/m(3) were used to produce foam filled honeycomb panels, and then experimental quasi-static compression tests were performed. Moreover, finite element model, based on the conducted tests, was developed. In the finite element analyses, three different polyurethane foams were used to fill three different honeycomb cores. The effects of foam filling of aluminum honeycomb core on its in-plane mechanical properties (such as mean crushing strength, absorbed energy, and specific absorbed energy) were analyzed experimentally and numerically. The results showed that the foam filling of honeycomb core can increase the in plane crushing strength up to 208 times, and its specific absorbed energy up to 20 times. However, it was found that the effect of foam filling decreases in heavier honeycombs, producing an increment of the above mentioned properties only up to 36 and 6 times, respectively.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available