4.4 Article

Efficient 3D modeling of damage in composite materials

Journal

JOURNAL OF COMPOSITE MATERIALS
Volume 49, Issue 7, Pages 817-828

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021998314525983

Keywords

3D progressive damage; degradation; composites; finite element; ANSYS; USERMAT

Ask authors/readers for more resources

Due to the complexity of composite material, numerical methods are generally utilized in their analysis and design. Commercial finite element (FE) codes, such as ANSYS and ABAQUS, allow the implementation of user subroutines in the program, which provides the advantage of using high meshing and solving technologies besides the improvement of materials and/or elements models. Nonlinearities arise for many engineering problems, for example, the progressive damage of a composite element that contains sources of stress concentration or damage localization such as holes, bolts, and/or flaws causes nonlinear material behavior. In order to simulate this nonlinear behavior, especially in 3D, an accurate material constitutive model is required. Therefore, the objective of this paper was to simulate the 3D progressive damage model of composite materials by using simple numerical models. In this paper, ANSYS user subroutine (USERMAT) was used to simulate the progressive damage behavior of a composite plate containing holes using simple models. Three different material models were used: ply discount model (PDM), simple progressive damage model (SPDM) by adding an empirical progressive damage criteria to the PDM, and continuum damage mechanics model (CDMM). Good agreements were observed between SPDM, CDMM, and published experimental results. Furthermore, CDMM showed the least dependence on mesh size. Three different damage evolution laws, linear, quadratic, and degradation laws, were adjusted and tested. It was found that there was no significant difference in the predicted failure load between these selected laws.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available