4.4 Article

Investigation on the high velocity impact properties of glass-reinforced fiber metal laminates

Journal

JOURNAL OF COMPOSITE MATERIALS
Volume 47, Issue 13, Pages 1605-1615

Publisher

SAGE PUBLICATIONS LTD
DOI: 10.1177/0021998312449883

Keywords

Glass-reinforced; high velocity impact; specific perforation energy; experimental; analytical

Ask authors/readers for more resources

The resistance of glass-reinforced laminates with different thickness ratio (ratio of glass/epoxy plies thickness to aluminum sheets thickness) subjected to high-velocity impact is investigated experimentally and analytically. The tests are carried out by a light gas gun and a 14g blunt cylindrical projectile. The ballistic limit velocity and specific perforation energy is used for comparing results. The failure mechanisms that absorbed projectile's energy during perforation process are studied by examining the damaged samples. This examining helped us to derive an analytical expression to predict the ballistic limit and specific perforation energy. The good agreement between experimental and analytical results shows well mathematical modeling. The results indicate that global deformation of aluminum sheets had the most effect on absorbing energy. Increasing the number of composite plies may enhance the absorbed energy of a fiber metal laminate but also increases weight and cause to be away from the optimum condition. Besides these two procedures, a numerical analysis is done and the results compared with previous ones and are commented upon.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available