4.3 Article

Substrate-specific changes in mitochondrial respiration in skeletal and cardiac muscle of hibernating thirteen-lined ground squirrels

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00360-013-0799-3

Keywords

Hibernation; Torpor; Oxidative phosphorylation; Cardiac muscle; Skeletal muscle

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. University of Western Ontario

Ask authors/readers for more resources

During torpor, the metabolic rate (MR) of thirteen-lined ground squirrels (Ictidomys tridecemlineatus) is considerably lower relative to euthermia, resulting in part from temperature-independent mitochondrial metabolic suppression in liver and skeletal muscle, which together account for similar to 40 % of basal MR. Although heart accounts for very little (< 0.5 %) of basal MR, in the present study, we showed that respiration rates were decreased up to 60 % during torpor in both subsarcolemmal (SS) and intermyofibrillar (IM) mitochondria from cardiac muscle. We further demonstrated pronounced seasonal (summer vs. winter [i.e., interbout] euthermia) changes in respiration rates in both mitochondrial subpopulations in this tissue, consistent with a shift in fuel use away from carbohydrates and proteins and towards fatty acids and ketones. By contrast, these seasonal changes in respiration rates were not observed in either SS or IM mitochondria isolated from hind limb skeletal muscle. Both populations of skeletal muscle mitochondria, however, did exhibit metabolic suppression during torpor, and this suppression was 2- to 3-fold greater in IM mitochondria, which provide ATP for Ca2+- and myosin ATPases, the activities of which are likely quite low in skeletal muscle during torpor because animals are immobile. Finally, these changes in mitochondrial respiration rates were still evident when standardized to citrate synthase activity rather than to total mitochondrial protein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available