4.3 Article

Enzymatic digestion in stomachless fishes: how a simple gut accommodates both herbivory and carnivory

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00360-010-0546-y

Keywords

Hemiramphidae; Belonidae; Adaptive modulation hypothesis; Compartmental model; Plug-flow reactor; Salinity

Funding

  1. University of Queensland

Ask authors/readers for more resources

The lack of a stomach is not uncommon amongst teleost fishes, yet our understanding of this reductive specialisation is lacking. The absence of a stomach does not restrict trophic preference, resulting in fishes with very similar alimentary morphology capable of digesting differing diets. We examined the digestive biochemistry of four beloniform fishes: two herbivorous halfbeaks (Hemiramphidae) and two carnivorous needlefish (Belonidae) to determine how these fishes digest their respective diets with their simple, short gut. We found that although the halfbeaks showed significantly greater alpha-amylase activity than that of the needlefish (P < 0.01), trypsin, lipase, aminopeptidase and maltase activity were not substantially different between the two families. We also found that habitat (freshwater vs. marine) appears to play a significant role in digestive capability, as the two freshwater taxa and the two marine taxa were significantly different (ANOSIM; dietary Gobal R = 0.544, P = 0.001, habitat Global R = 0.437, P = 0.001), despite their phyletic and dietary similarities. Our findings offer partial support for the adaptive modulation hypothesis, support the Plug-Flow Reactor model of digestion in herbivorous halfbeaks and also support the compartmental model of digestion but suggest that another model is required to describe stomachless carnivorous needlefish.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available