4.3 Article

Temporal and spatial patterns of gene expression in skeletal muscles in response to swim training in adult zebrafish (Danio rerio)

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s00360-009-0398-5

Keywords

PGC-1; Mitochondrial enzymes; Gene expression; Fiber type; Oxidative metabolism; Exercise

Funding

  1. Natural Science and Engineering Council of Canada (NSERC)
  2. Canadian Foundation for Innovation New Opportunities

Ask authors/readers for more resources

In adult zebrafish, 4 weeks of exercise training is known to induce an increase in mitochondrial enzymes such as citrate synthase (CS) when determined in mixed (red and white) muscle. However, this remodeling is not accompanied by changes in PGC-1 alpha mRNA, a potent inducer of mitochondrial biogenesis in mammals. To further understand this response, we examined absolute and relative changes in red muscle area by histochemistry after 4 weeks of swim training. We also examined fiber-type specific responses in the expression of metabolic genes and putative regulators in red and white muscle of adult zebrafish at 1 and 8 weeks of training and in recovery from a single bout of exercise. Total red muscle area was unaltered after 4 weeks of training. The mRNA expression of CS was unaffected in red muscle, while it was increased in white muscle after 1 week of training and remained elevated at 8 weeks of training, suggesting an increase in oxidative capacity of this fiber type. In contrast, PGC-1 alpha mRNA was elevated in both muscles only after 1 week of training. In both muscles, an acute bout of exercise rapidly (within 0-2 h post-exercise) induced PGC-1 alpha mRNA and a delayed (24 h) increase in CS mRNA post-exercise. These results suggest complex temporal and spatial adaptive molecular responses to exercise in the skeletal muscles of zebrafish.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available