4.5 Article

Ultrastructure of Cisternal Synapses on Outer Hair Cells of the Mouse Cochlea

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 522, Issue 3, Pages 717-729

Publisher

WILEY-BLACKWELL
DOI: 10.1002/cne.23478

Keywords

synaptic cistern; calcium store; cholinergic inhibition; cochlea; hair cell

Funding

  1. National Institute on Deafness and Other Communication Disorders, National Institutes of Health [R01 DC001508, P30 DC005211]

Ask authors/readers for more resources

C (cisternal) synapses with a near membrane postsynaptic cistern are found on motor neurons and other central neurons, where their functional role is unknown. Similarly structured cisternal synapses mediate cholinergic inhibition of cochlear hair cells via 910-containing ionotropic receptors and associated calcium-activated (SK2) potassium channels, providing the opportunity to examine the ultrastructure of genetically altered cisternal synapses. Serial section electron microscopy was used to examine efferent synapses of outer hair cells (OHCs) in mice with diminished or enhanced cholinergic inhibition. The contact area of efferent terminals, the appositional area of the postsynaptic cistern, the distance of the cistern from the plasma membrane, and the average width of the cisternal lumen were recorded. The synaptic cisterns of wild-type OHCs were closely aligned (14-nm separation) with the hair cell membrane and coextensive with the micrometers-long synaptic terminals. The cisternal lumen averaged 18 nm so that the cisternal volume was approximately 30% larger than that of the cytoplasmic space between the cistern and the plasma membrane. Synaptic ultrastructure of 9L9T knockin OHCs (acetylcholine receptor gain of function) were like those of wild-type littermates except that cisternal volumes were significantly larger. OHCs of SK2 knockout mice had few small efferent terminals. Synaptic cisterns were present, but smaller than those of wild-type littermates. Taken together, these data suggest that the cistern serves as a sink or buffer to isolate synaptic calcium signals. J. Comp. Neurol. 522:717-729, 2014. (c) 2013 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available