4.5 Article

Ontogeny of Cone Photoreceptor Mosaics in Zebrafish

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 518, Issue 20, Pages 4182-4195

Publisher

WILEY
DOI: 10.1002/cne.22447

Keywords

heterotypic cell mosaic; row mosaic; metamorphosis; opsin; multiplex in situ hybridization; teleost

Funding

  1. National Institutes of Health [R01 EY015509]
  2. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

Cone photoreceptors in fish are typically arranged into a precise, reiterated pattern known as a cone mosaic. Cone mosaic patterns can vary in different fish species and in response to changes in habitat, yet their function and the mechanisms of their development remain speculative. Zebrafish (Danio rerio) have four cone subtypes arranged into precise rows in the adult retina. Here we describe larval zebrafish cone patterns and investigate a previously unrecognized transition between larval and adult cone mosaic patterns. Cone positions were determined in transgenic zebrafish expressing green fluorescent protein (GFP) in their UV-sensitive cones, by the use of multiplex in situ hybridization labelling of various cone opsins. We developed a mosaic metric statistical tool to measure local cone order. We found that ratios of the various cone subtypes in larval and adult zebrafish were statistically different. The cone photoreceptors in larvae form a regular heterotypic mosaic array; i.e., the position of any one cone spectral subtype relative to the other cone subtypes is statistically different from random. However, the cone spectral subtypes in larval zebrafish are not arranged in continuous rows as in the adult. We used cell birth dating to show that the larval cone mosaic pattern remains as a distinct region within the adult retina and does not reorganize into the adult row pattern. In addition, the abundance of cone subtypes relative to other subtypes is different in this larval remnant compared with that of larvae or canonical adult zebrafish retina. These observations provide baseline data for understanding the development of cone mosaics via comparative analysis of larval and adult cone development in a model species. J. Comp. Neurol. 518:4182-4195, 2010. (C) 2010 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available