4.5 Article

Aneuploid mosaicism in the developing and adult cerebellar cortex

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 507, Issue 6, Pages 1944-1951

Publisher

WILEY
DOI: 10.1002/cne.21648

Keywords

cerebellum; aneuploidy; mosaicism; mitosis; neurogenesis; FISH

Funding

  1. NIMH NIH HHS [R21 MH076145, MH076145] Funding Source: Medline

Ask authors/readers for more resources

Neuroprogenitor cells (NPCs) in several telencephalic proliferative regions of the mammalian brain, including the embryonic cerebral cortex and postnatal subventricular zone (SVZ), display cell division defects in normal cells that result in aneuploid adult progeny. Here, we identify the developing cerebellum as a major, nontelencephalic proliferative region of the vertebrate central nervous system (CNS) that also produces aneuploid NPCs and nonmitotic cells. Mitotic NPCs assessed by metaphase chromosome analyses revealed that 15.3% and 20.8% of cerebellar NPCs are aneuploid at PO and P7, respectively. By using immunofluorescent analysis of cerebellar NPCs, we show that chromosome segregation defects contribute to the generation of cells with an aneuploid genomic complement. Nonmitotic cells were assessed by fluorescence-activated cell sorting (FACS) coupled with fluorescence in situ hybridization (FISH), which revealed neuronal and nonneuronal aneuploid populations in both the adult mouse and human cerebellum. Taken together, these results demonstrate that the prevalence of neural aneuploidy includes nontelencephalic portions of the neuraxis and suggest that the generation and maintenance of aneuploid cells is a widespread, if not universal, property of central nervous system development and organization.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available