4.5 Article

Postnatal ontogeny of the transcription factor Lmx1b in the mouse central nervous system

Journal

JOURNAL OF COMPARATIVE NEUROLOGY
Volume 509, Issue 4, Pages 341-355

Publisher

WILEY-LISS
DOI: 10.1002/cne.21759

Keywords

localization; brain; Tlx3; postanatal development; in situ hybridization; immunohistochemistry

Ask authors/readers for more resources

The expression profile of Lim homeodomain transcription factor Lmx1b in the mouse brain was investigated at different postnatal stages by immunohistochemistry and in situ hybridization. At postnatal day (P) 7, many Lmx1b-expressing neurons were found in the posterior hypothalamic area, supramammillary nucleus, ventral premammillary nucleus, and subthalamic nucleus. In the midbrain, numerous Lmx1b-expressing neurons were present in the substantia nigra pars compacta and ventral tegmental area. In the hindbrain, Lmx1b-expressing neurons were primarily observed in the raphe nuclei, parabrachial nuclei, principal sensory trigeminal nucleus, nucleus of the solitary tract, and laminae I-II of the medullary dorsal horn as well as spinal dorsal horn. Although expression levels diminished as postnatal life progressed, persistent expression throughout the first year of life was observed in many of these regions. In contrast, Lmx1b was present in a few brain regions (e.g., principal sensory trigeminal nucleus) only in early life with expression expiring by P60. Lmx1b was observed in dopaminergic neurons in the midbrain and serotonergic neurons in the hindbrain, as determined by double labeling with specific markers. In addition, we found that Lmx1b-expressing neurons are got GABAergic, and Lmx1b was colocalized with T1x3 in the parabrachial nuclei, principal sensory trigeminal nucleus, nucleus of the solitary tract. as well as the medullary and spinal dorsal horns, suggesting that Lmx1b-expressing cells in these areas are excitatory neurons. Our data suggest that Lmx1b is involved in the postnatal maturation of certain types of neurons and maintenance of their normal functions in the adult brain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available