4.7 Article

A general approach for fabrication of nitrogen-doped graphene sheets and its application in supercapacitors

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 417, Issue -, Pages 270-277

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2013.11.021

Keywords

Doped; Graphene; Graphene oxide; Electrochemical performance; Supercapacitors

Funding

  1. Director Foundation of Xi'an Institute of Optics and Precision Mechanics [Y255F81ZZ0]
  2. Western Light Program of Chinese Academy of Sciences [Y329181213]

Ask authors/readers for more resources

In this paper, a general and efficient strategy has been developed to produce nitrogen-doped graphene sheets (NGs) based on hard and soft acids and bases (HSAB) theory. Under hydrothermal conditions, any salt with amphiprotic character have a strong tendency to hydrolysis, it is possible to provide reducing agent and nitrogen source simultaneously. It is worth noting that, NGs can be prepared under hydrothermal conditions by using some common ammonium salts with hard acid-soft base pairs as nitrogen-doping agents. The morphology, structure and composition of the as-prepared NGs were studied in detail. The results demonstrated that large amount of nitrogen was incorporated into the nanocarbon frameworks at the same time as the graphene oxide (GO) sheets were reduced. The electrochemical behavior of the synthesized NGs as supercapacitor electrodes was evaluated in a symmetric two-electrode cell configuration with 1 M H2SO4 as the electrolytes. It was found that the nitrogen groups making the as-prepared NGs exhibited remarkably enhanced electrochemical performance when used as electrode materials in supercapacitors. The supercapacitor based on the NGs exhibited a high specific capacitance of 242 F g(-1), at a current density of 1 A g(-1), and remains a relatively high capacitance even at a high current density. This work will put forward to understand and optimize heteroatom-doped graphene in energy storage systems. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available