4.7 Article

Shark skin inspired low-drag microstructured surfaces in closed channel flow

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 393, Issue -, Pages 384-396

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2012.10.061

Keywords

Riblets; Shark skin; Biomimetics; Low-drag; Antifouling; Closed channel

Funding

  1. National Science Foundation, Arlington, VA [CMMI-1000108]
  2. Div Of Civil, Mechanical, & Manufact Inn
  3. Directorate For Engineering [1000108] Funding Source: National Science Foundation

Ask authors/readers for more resources

Living nature is the inspiration for many innovations and continues to serve as an invaluable resource to solve technical challenges. Skin from fast swimming sharks intrigue researchers since its low-drag riblet structure is applicable to many engineering applications. In this study, riblet-lined closed channel (rectangular duct) internal flow was examined since its effect is less understood than with open channel external flow. With one experimental setup and two fluids, this study examines various dimensional aspects of microstructured riblets. Experimental parameters include riblet geometry, fluid velocity (laminar and turbulent flow), fluid viscosity, riblet combinations, channel size, wettability, and scalability. For direct comparison, the sample flow channel was fabricated to accommodate multiple samples with water and air in various flow conditions, where drag is characterized by measuring pressure drop. Results are discussed and conceptual models are shown suggesting the interaction between vortices and the riblet surfaces. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available