4.7 Article

Heterogeneous Fenton-like oxidation of monochlorobenzene using green synthesis of iron nanoparticles

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 410, Issue -, Pages 67-73

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2013.08.020

Keywords

Green synthesis; Fe NPs; Monochlorobenzene; Fenton-like; Tea extracts

Funding

  1. Fujian Minjiang Fellowship Grant from Fujian Normal University

Ask authors/readers for more resources

Iron nanoparticles (Fe NPs) were synthesized using tea extracts as a catalyst for the Fenton-like oxidation of monochlorobenzene (MCB), where 69%, 53%, and 39% of MCB were, respectively, degraded by Fe NPs synthesized using green tea extracts, oolong tea extracts, and black tea extracts. Fe NPs synthesized using green tea extracts (GT-Fe NPs) demonstrated the best degradation since green tea contains a high concentration of caffeine/polyphenols used as both reducing and capping agents in the synthesis of Fe NPs. This was confirmed by SEM image, EDS, and XRD pattern of GT-Fe NPs. In addition, batch experiments show that the oxidation of MCB and the removal of chemical oxygen demand (COD) using GT-Fe NPs were 81% and 31%, respectively, at optimal conditions, where dosages were 0.6 g/L GT-Fe NPs, 0.045 mol/L H2O2, and initial pH of 3.0. Compared to homogeneous Fenton oxidation of MCB, GT-Fe NPs as a heterogeneous catalyst indicate that Fe2+ and Fe3+ leached from GT-Fe NPs nanoparticles and consequently reduced the formation of iron sludge. Finally, GT-Fe NPs were successful in removing MCB from wastewaters, and the possible Fenton-like oxidative mechanism of MCB was proposed. The proposition was based on adsorption of MCB on the surface of GT-Fe NPs, decomposition of H2O2, generation of hydroxyl radicals, and oxidation of MCB. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available