4.7 Article

Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 406, Issue -, Pages 217-224

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2013.05.053

Keywords

Surface precipitation; Anion adsorption; Surface charge; Ionic strength; Adsorption edge

Funding

  1. National Research Foundation of Korea (NRF)
  2. Ministry of Education, Science and Technology [2012R1A1B3001409]

Ask authors/readers for more resources

Few studies have investigated surface complexation of antimony (Sb) on natural sorbents. In addition, intrinsic acidic constants, speciation, and spectroscopic data are scarce for Sb sorption in soil. Only simple sorption models have been proposed to describe the sorption of Sb(V) on specific mineral surfaces. This study therefore assessed the mechanisms of Sb(III) and Sb(V) adsorption on natural red earth (NRE), a naturally occurring iron coated sand, at various pHs and Sb loadings. The Sb(V) adsorption followed typical anion adsorption curve with adsorption reaching maximum around pH 4-5, while no pH dependence was observed for Sb(III) sorption. The FT-IR spectra revealed that shifts in absorbance of the hydroxyl groups in iron-oxide were related to the Fe-O-Sb bonds and provided evidence for inner sphere bond formation. Direct evidence on the strong interaction of Sb(III) and Sb(V) with Fe-O and was observed from the decrease in Fe-2p, Al-2p, and Si-2p peaks of the X-ray photoelectron spectroscopy (XPS) data before and after Sb(V) and Sb(III) adsorption on NRE. Successful data modeling using the 2pk diffuse double layer model (DDLM) with the FITEQL revealed that sorption occurs through the formation of bidentate mononuclear and binuclear complexes. Model simulations showed a high affinity to the FeOH sites at high Sb loadings, whereas at low loadings, both FeOH and AlOH sites showed similar affinities to Sb. In the case of Sb(V), multilayer formation was also revealed in addition to surface complexation by the isotherm data fitted with the Freundlich model and two sites Langmuir equations, which indicated heterogeneous multilayer adsorption of Sb(V) on NRE. (C) 2013 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available