4.7 Article

Synthesis of Au/Pt bimetallic nanoparticles with a Pt-rich shell and their high catalytic activities for aerobic glucose oxidation

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 394, Issue -, Pages 166-176

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2012.11.059

Keywords

Au/Pt bimetallic nanoparticles; Aerobic glucose oxidation; Negatively charged atoms; Electronic charge transfer effects; Active sites; Size dependence

Funding

  1. Core Research for Evolutional Science and Technology (CREST) program
  2. Japan Science and Technology agency (JST), Japan

Ask authors/readers for more resources

Integration of 'green chemistry' principles into nanotechnology is one of the key issues in nanoscience research today. In this work, three series of Au/Pt bimetallic nanoparticles (BNPs) with a structure of Au-rich core/Pt-rich shell were prepared using simultaneous reduction with rapid injection of NaBH4, simultaneous reduction with dropwise addition of NaBH4, and simultaneous alcohol reduction. The effects of particle size, electronic structure and composition upon the catalytic activities for aerobic glucose oxidation of the BNPs were also investigated. Catalytically highly active PVP-protected Au/Pt BNPs of about 1.5 nm in diameter were synthesized using simultaneous reduction with rapid injection of NaBH4. The prepared colloidal Au/Pt BNPs catalysts possessed a high and durable catalytic activity for aerobic glucose oxidation, which were stably kept for more than 2 months under ambient conditions. The maximum activities normalized with Au content of the BNPs with Au/Pt atomic ratio of 4/6 were nearly 10 times higher than that of Au nanoparticles (NPs) with nearly the same particle size. The higher catalytic activity of the prepared Au/Pt BNPs than the Au NPs can be ascribed to the following two factors; (1) the small average diameter, usually about 1.5 nm, and (2) the presence of negatively charged Au and Pt atoms due to electron donation from protecting polymer (PVP: poly(N-vinyl-2-pyrrolidone)) by electronic charge transfer effects upon catalytically active sites. In contrast, the Au/Pt BNPs, synthesized by alcohol reduction and dropwise addition of NaBH4 into the starting solution and having the large mean particle sizes, showed a low catalytic activity. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available