4.7 Article

Adsorption of roxarsone from aqueous solution by multi-walled carbon nanotubes

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 377, Issue -, Pages 355-361

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2012.03.064

Keywords

Adsorption isotherms; Kinetics; MWCNTs; Roxarsone

Funding

  1. NSFC [51078122, 51108148]
  2. NSFC-JST [21021140001]
  3. National Basic Research Program of China [2011CB411904]
  4. State Key Joint Laboratory of Environment Simulation and Pollution Control [10K06ESPCT]
  5. SRF for ROCS, SEM

Ask authors/readers for more resources

Roxarsone, an organoarsenic compound serving as a common feeding additive in poultry industry, brings about potential risk of the toxic inorganic arsenate contamination in ambient environment. Current understanding in the dynamics of roxarsone removal and the determining environmental processes remains unclear, thus restricts the progress in roxarsone-contaminated wastewater treatment. In this study, the adsorption of roxarsone on multi-walled carbon nanotubes (MWCNTs) was investigated. The adsorption of roxarsone on MWCNTs decreased dramatically with increasing pH from 2.0 to 11.7 and decreased significantly with increasing ionic strength from 0 to 1.0 mol/L KCl. It was found that the sorption isotherms of roxarsone on MWCNTs were nonlinear, which can be well described according to the Freundlich and Polanyi-Manes models. Thermodynamic analysis indicates that the adsorption of roxarsone on MWCNTs is an exothermic and spontaneous process. Sorption site energy analysis reveals a distribution of sorption energy and the heterogeneous adsorption sites of roxarsone on MWCNTs. The dynamic adsorption with column shows the potential of the practical application for the roxarsone-contaminated wastewater treatment by MWCNTs. The FTIR analysis indicates that EDA interaction and electrostatic repulsion might be the dominant mechanisms for the adsorption of roxarsone on MWCNTs. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available