4.7 Article

Effect of kaolinite, silica fines and pH on transport of polymer-modified zero valent iron nano-particles in heterogeneous porous media

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 370, Issue -, Pages 1-10

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2011.12.059

Keywords

Environmental nanotechnology; Nanoparticle heteroaggregation; Exposure assessment; Nanoparticle transport; Surface modified nanoparticle; Nanoparticle coatings

Funding

  1. US EPA [R833326]
  2. NSF [BES-068646, EF-0830093]
  3. Department of Defense [W912HQ-06-C-0038]
  4. EPA [909171, R833326] Funding Source: Federal RePORTER

Ask authors/readers for more resources

Polymer coatings on nano-sized remediation agents and subsurface heterogeneity will affect their transport, likely in a pH-dependent manner. The effect of pH on the aggregation of polymer-coated nanoscale zerovalent iron (nZVI) and its deposition onto sand and clay (kaolinite) surfaces was studied. nZVI coatings included a high molecular weight (90 kg/mol) strong polyanion, poly(methacrylic acid)-b-(methy methacrylate)-b-(styrenesulfonate) (PMAA-PMMA-PSS) and a low molecular weight (2.5 kg/mol) weak polyanion, polyaspartate. Aggregation and deposition increased with decreasing pH for both polyelectrolytes. The extent was greater for the low MW polyaspartate coated nZVI. Enhanced deposition at lower pH was indicated because the elutability of polyaspartate-modified hematite (which did not aggregate) also decreased at lower pH. The greater deposition onto clay minerals compared to similar sized silica fines is attributed to charge heterogeneity on clay mineral surfaces, which is sensitive to pH. Heteroaggregation between kaolinite particles and nZVI over the pH range 6-8 confirmed this assertion. Excess unadsorbed polyelectrolyte in solution (100 mg/L) enhanced the transport of modified nZVI by minimizing aggregation and deposition onto sand and clay. These results indicate that site physical and chemical heterogeneity must be considered when designing an nZVI emplacement strategy. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available