4.7 Article

Adsorption of polycyclic aromatic hydrocarbons from aqueous solutions by modified periodic mesoporous organosilica

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 357, Issue 2, Pages 466-473

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2011.02.013

Keywords

PAHs; Adsorption; PMO; Adsorption models

Funding

  1. Conselho Nacional de Desenvolvimento Cientifico e Tenologico (CNPq) [486059/2007-3]

Ask authors/readers for more resources

A novel procedure was developed for the synthesis of a periodic mesoporous organosilica (PMO), which was used to remove polycyclic aromatic hydrocarbons (PAHs) from aqueous solutions. Adsorption equilibrium isotherms and adsorption kinetics experiments were carried out in solutions of PAHs (2-60 mg L-1), using the PMO as adsorbent. Adsorption models were used to predict the mechanisms involved. The adsorption kinetics data best fitted the pseudo-first-order kinetic model for naphthalene, and to the pseudo-second-order model for fluorene, fluoranthene, pyrene, and acenaphtene. The intraparticle model was also tested and pointed to the occurrence of such processes in all cases. The isotherm models which best represented the data obtained were the Freundlich model for fluoranthene, pyrene, and fluorene, the Temkin model for naphthalene, and the Redlich-Peterson model for acenaphtene. PAHs showed similar behavior regarding kinetics after 24 h of contact between adsorbent and PAHs. FTIR, XRD, BET, and SEM techniques were used for the characterization of the adsorbent material. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available