4.7 Article

Molecular selective photocatalysis by TiO2/nanoporous silica core/shell particulates

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 358, Issue 1, Pages 245-251

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2011.02.018

Keywords

Photocatalysis; Molecular recognition; Mesoporous silica; Titania; Nonylphenol

Funding

  1. Japan Society for the Promotion of Science [19350103]
  2. MEXT
  3. Special Research Project
  4. Grants-in-Aid for Scientific Research [19350103] Funding Source: KAKEN

Ask authors/readers for more resources

The coating of TiO2 particles (P25) by a nanoporous silica layer was conducted to impart molecular recognitive photocatalytic ability. TiO2/nanoporous silica core/shell particles with varied pore diameters of the shell were synthesized by the reaction of P25 with an aqueous mixture of tetraethoxysilane and alkyl-trimethylammonium chloride with varied alkyl chain lengths, followed by calcination. The TEM and nitrogen adsorption/desorption isotherms of the products showed that a nanoporous silica shell with a thickness of ca. 2 nm and controlled pore diameter (1.2, 1.6, and 2.7 nm) was deposited on the titania particle when surfactants with different alkyl chain lengths (C12, C16 and C22) were used. The water vapor adsorption/desorption isotherms of the core/shell particles revealed that a larger amount of water adsorbed on the core/shell particles when the pore diameter is larger. The Si-29 MAS NMR spectra of the core/shell particles showed that the amount of surface silanol groups was independent of the water vapor adsorption capacity of the products. The possible molecular recognitive photocatalysis on the products was investigated under UV irradiation using two kinds of aqueous mixtures containing different organic compounds with varied sizes and functional groups: a 4-butylphenol, 4-hexylphenol, and 4-nonylphenol mixture and a 2-nitrophenol, 2-nitro-4-phenylphenol, and 4-nitro-2,6-diphenylphenol mixture. It was found that the core/shell particles exhibited selective adsorption-driven molecular recognitive photocatalytic decomposition of 4-nonylphenol and 2-nitrophenol in the two mixtures. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available