4.7 Article

Growth kinetics of sulfur nanoparticles in aqueous surfactant solutions

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 354, Issue 2, Pages 563-569

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2010.11.039

Keywords

Growth kinetics; Nucleation; Coarsening constant; Diffusion coefficient

Funding

  1. Department of Science and Technology (DST) under Nanomission, New Delhi, India [SR/S5/NM-04/2007]

Ask authors/readers for more resources

Sulfur is an important element has many practical applications when present as nanoparticles. Despite the practicable applications, limited studies are available in the literature related to synthesis of sulfur nanoparticles. Growth kinetics of colloidal sulfur particles synthesized from aqueous solutions using different surfactants have been studied here. The effects of different parameters such as reactant concentration, temperature, sonication, types of acids, types of surfactants, and even surfactant concentration are studied on the growth kinetics. Since the reaction rate is fast, particle growth depends on the parameters which affect diffusion of sulfur molecules. There is a linear relationship found among the reactant concentration and the particle coarsening rate constant. The growth kinetics was studied in the presence of different surfactants such as nonionic (poly(oxyethylene) p-tert-octylphenyl ether. TX-100), anionic (sodium dodecylbenzene sulfonate, SDBS), cationic (cetyltrimethyammonium bromide, CTAB) and results show the coarsening constant changes according to the following order: water > TX-100 > SDBS > CTAB. The particle growth rate also depends on the surfactant concentration, coarsening rate constant decreases with the increase in surfactant concentration and become constant close to the critical micellar concentration (CMC). The coarsening rate constant also highly depends on the types of acid used as catalyst. (C) 2010 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available