4.7 Article

Improving the heat transfer efficiency of synthetic oil with silica nanoparticles

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 364, Issue 1, Pages 71-79

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2011.08.004

Keywords

Heat transfer fluid; Synthetic oil; Therminol; Nanofluid; Silica; Silicon oxide; Nanoparticles; Surfactant; Thermal conductivity; Viscosity; Total heat; Heat transfer efficiency; Cationic surfactant; Benzalkonium chloride

Funding

  1. US Department of Energy
  2. DOE
  3. US Department of Energy Office of Science Laboratory by UChicago Argonne, LLC [DE-AC02-06CH11357]

Ask authors/readers for more resources

The heat transfer properties of synthetic oil (Therminol 66) used for high temperature applications was improved by introducing 15 nm silicon dioxide nanoparticles. Stable suspensions of inorganic nanoparticles in the non-polar fluid were prepared using a cationic surfactant (benzalkonium chloride). The effects of nanoparticle and surfactant concentrations on thermo-physical properties (viscosity, thermal conductivity and total heat absorption) of these nanofluids were investigated in a wide temperature range. The surfactant-to-nanoparticle (SN) ratio was optimized for higher thermal conductivity and lower viscosity, which are both critical for the efficiency of heat transfer. The theological behavior of SiO2/TH66 nanofluids was correlated to average agglomerate sizes, which were shown to vary with SN ratio and temperature. The conditions of ultrasonic treatment were studied and the temporary decrease of agglomerate size from an equilibrium size (characteristic to SN ratio) was demonstrated. The heat transfer efficiencies were estimated for the formulated nanofluids for both turbulent and laminar flow regimes and were compared to the performance of the base fluid. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available