4.7 Article

Structure of nanofibrillated cellulose layers at the o/w interface

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 356, Issue 1, Pages 58-62

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2010.12.083

Keywords

Nanofibrillated cellulose; Oil/water interface; Microfibrillated cellulose (MFC); Langmuir-Blodgett technique; Emulsion stabilization mechanism; Microscopy; Image

Funding

  1. Research Council of Norway

Ask authors/readers for more resources

The nature of layers formed by cellulose nanofibrils that had been surface modified (hydrophobized) at the oil/water (o/w) interface was investigated. The aim of the study was to clarify the mechanism underlying the excellent ability of these nanoparticles to stabilize emulsions. Layers of hydrophobized nanofibrillated cellulose spread at the o/w interface were deposited on glass slides by the Langmuir-Blodgett deposition technique. Overall evaluation of layer structures was performed by image analysis based on a Quadtree decomposition of images obtained from a flatbed scanner. A more detailed characterization of the layer structures was performed by Atomic Force Microscopy (AFM), and Field-Emission Scanning Electron Microscopy (FE-SEM). The results show that nanofibrils that were able to stabilize emulsions occur as single, dispersed fibrils or form large, network-like aggregates at the o/w interface. Fibrils that were insufficiently hydrophobized and therefore did not stabilize emulsions were only partially deposited and formed small, compact aggregates. We conclude that it is likely that the network formation is the main mechanism by which the fibrils prevent coalescence of emulsion droplets. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available