4.7 Article

AFM-based nanotribological and electrical characterization of ultrathin wear-resistant ionic liquid films

Journal

JOURNAL OF COLLOID AND INTERFACE SCIENCE
Volume 317, Issue 1, Pages 275-287

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2007.09.046

Keywords

ionic liquids; lubricants; adhesion; friction; wear; atomic force microscopy; Kelvin probe microscopy; surface potential; resistance

Ask authors/readers for more resources

Ionic liquids (ILs) are considered as lubricants for micro/nanoelectromechanical systems (MEMS/NEMS) due to their excellent thermal and electrical conductivity. So far, only macroscale friction and wear tests have been conducted on these materials. Evaluating the nanoscale tribological performance of ILs when applied as a few nanometers-thick film on a substrate is a crucial step to understand how these novel materials can efficiently lubricate MEMS/NEMS devices. To this end, the adhesion, friction and wear properties of two ionic liquids, 1-butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) and 1-butyl-3-methylimidazolium octyl sulfate (BMIM-OctSO(4)), applied on Si(100), are investigated for the first time using atomic force microscopy (AFM). Data is compared to the perfluoropolyether lubricant Z-TETRAOL, which has high thermal stability and extremely low vapor pressure. Wear at ultralow loads was simulated and the lubricant removal mechanism was investigated using AFM-based surface potential and contact resistance techniques. Thermally treated coatings containing a mobile lubricant fraction (i.e., partially bonded) were better able to protect the Si substrate from wear compared to the fully bonded coatings, and this enhanced protection is attributed to lubricant replenishment. (c) 2007 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available